Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.429
Filtrar
1.
Chirality ; 36(4): e23665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570326

RESUMO

In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.


Assuntos
Aminoácidos , Líquidos Iônicos , Aminoácidos/química , Fenilalanina/química , Glutamina , Líquidos Iônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
2.
Chem Rev ; 124(8): 4679-4733, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38621413

RESUMO

The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.


Assuntos
Líquidos Iônicos , Estresse Oxidativo , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Animais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
J Mater Chem B ; 12(16): 3908-3916, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38567452

RESUMO

The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.


Assuntos
Cobre , Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Cobre/química , Nanopartículas Metálicas/química , Líquidos Iônicos/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
4.
Chem Rev ; 124(6): 3037-3084, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38437627

RESUMO

Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , Polímeros
5.
Int J Biol Macromol ; 264(Pt 2): 130775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467210

RESUMO

There have been continuous quests for suitable solvents for starch, given the importance of effective starch dissolution in its modification and subsequent materials production. In light of this, the potential of hydroxyl-functionalized ionic liquid (IL) as a promising solvent for starch was investigated. Within this study, a hydroxyl-functionalized IL 1-(2,3-dihydroxypropyl)-3-methylimidazole chloride ([Dhpmim][Cl]) was synthesized, and the dissolution of starch in this IL and its aqueous solutions was examined. Starch (5.35 wt%) was completely dissolved in [Dhpmim][Cl] within 2 h at 100 °C. The solubility of starch in [Dhpmim][Cl]-water mixtures initially increased and then decreased with rising water content. The optimal ratio was found to be 1:9 (wt/wt) water:[Dhpmim][Cl], achieving the highest solubility at 9.28 wt%. Density functional theory (DFT) simulations elucidated the possible interactions between starch and solvents. After dissolution and regeneration in the 1:9 water:[Dhpmim][Cl] mixture, starch showed no discernible change in the molecular structure, with no derivatization reaction observed. Regenerated starch exhibited a transformation in crystalline structure from A-type to V-type, and its relative crystallinity (12.4 %) was lower than that of native starch (25.2 %), resulting in decreased thermal stability. This study suggests that the hydroxyl-functionalized IL, [Dhpmim][Cl], and its aqueous solutions serve as effective solvents for starch dissolution.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Amido/química , Imidazóis/química , Água/química , Solventes/química , Soluções , Solubilidade , Radical Hidroxila , Cloretos
6.
ACS Appl Mater Interfaces ; 16(14): 18063-18074, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537174

RESUMO

Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.


Assuntos
Infecções Bacterianas , Líquidos Iônicos , Humanos , Solventes/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Microfluídica , Staphylococcus aureus , Quercetina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
7.
Colloids Surf B Biointerfaces ; 237: 113836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479261

RESUMO

The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Lipase/química , Enzimas Imobilizadas/química , Cálcio , Líquidos Iônicos/química , Estabilidade Enzimática
8.
J Chem Inf Model ; 64(6): 1996-2007, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452014

RESUMO

Viruses are a group of widespread organisms that are often responsible for very dangerous diseases, as most of them follow a mechanism to multiply and infect their hosts as quickly as possible. Pathogen viruses also mutate regularly, with the result that measures to prevent virus transmission and recover from the disease caused are often limited. The development of new substances is very time-consuming and highly budgeted and requires the sacrifice of many living organisms. Computational chemistry methods allow faster analysis at a much lower cost and, most importantly, reduce the number of living organisms sacrificed experimentally to a minimum. Ionic liquids (ILs) are a group of chemical compounds that could potentially find a wide range of applications due to their potential virucidal activity. In our study, we conducted a complex computational analysis to predict the antiviral activity of ionic liquids against three surrogate viruses: two nonenveloped viruses, Listeria monocytogenes phage P100 and Escherichia coli phage MS2, and one enveloped virus, Pseudomonas syringae phage Phi6. Based on experimental data of toxic activity (logEC90), we assigned activity classes to 154 ILs. Prediction models were created and validated according to the Organization for Economic Co-operation and Development (OECD) recommendations using the Classification Tree method. Further, we performed an external validation of our models through virtual screening on a set of 1277 theoretically generated ionic liquids and then selected 10 active ionic liquids, which were synthesized to verify their activity against the analyzed viruses. Our study proved the effectiveness and efficiency of computational methods to predict the antiviral activity of ionic liquids. Thus, computational models are a cost-effective alternative approach compared with time-consuming experimental studies where live animals are involved.


Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Aprendizado de Máquina , Antivirais/farmacologia
9.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473998

RESUMO

Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C​2C​1Im][C​4F​9SO​3] and [N​1112(OH)][C​4F​9SO​3]) vs. mere fluoro-containing IL ([C​4C​1Im][CF​3SO​3]), in combination with sucrose or [N​1112(OH)][H​2PO​4] (well-known globular protein stabilizers), or high-charge-density salt K​3PO​4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.


Assuntos
Líquidos Iônicos , Albumina Sérica , Humanos , Albumina Sérica/química , Líquidos Iônicos/química , Interferon-alfa/farmacologia , Água/química , Proteínas Recombinantes
10.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474650

RESUMO

Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based on Ag nanoparticles with 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H spiro[cyclohexane1,2'-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16). The nanostructure of the prepared ionic liquid was characterized using techniques such as FTIR, 1HNMR, 13CNMR, UV, SEM, and TEM. The biological activity of the prepared compound (P16) and its nanocomposites with Ag nanoparticles was tested using five clinical bacteria (Pseudomonas aeruginosa 249; Escherichia coli 141; Enterobacter cloacae 235; Staphylococcus epidermidis BC 161, and methicillin-resistant S. aureus 217), and three Candida species (Candida utilis ATCC 9255; C. tropicalis ATCC 1362, and C. albicans ATCC 20402). The FTIR, 1HNMR, and 13CNMR results confirmed the chemical structure of the synthesized P16 compound. The nanostructure of the prepared ionic liquid was determined based on data obtained from the UV, SEM, and TEM tests. The antibacterial and anticandidal results showed that the biological activity of the compound (P16) was enhanced after the formation of nanocomposite structures with Ag nanoparticles. Moreover, the biological activity of the compound itself (P16) and that of its nanocomposite structure with Ag nanoparticles was higher than that of ampicillin and amphotericin B, which were used as control drugs in this work.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Prata/química , Nanopartículas Metálicas/química , Líquidos Iônicos/química , Antibacterianos/química , Nanocompostos/química , Candida albicans , Testes de Sensibilidade Microbiana
11.
Nano Lett ; 24(8): 2520-2528, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359360

RESUMO

Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Cobre , Oxirredutases , Catálise , Aminoácidos
12.
Colloids Surf B Biointerfaces ; 235: 113773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350204

RESUMO

The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.


Assuntos
Líquidos Iônicos , Quinolinas , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Caenorhabditis elegans/metabolismo , Soroalbumina Bovina/química , Biofilmes , Quinolinas/farmacologia
13.
Environ Res ; 248: 118420, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316384

RESUMO

The hydrophobic nature of an extractant is particularly critical in the treatment of wastewater. Considering that dicationic ionic liquids (DILs) are likely to be more hydrophobic, a comparative study of the separation of phenol from waters using [NTf2]- based monocationic ionic liquids (MILs) and DILs is carried out both from experimental and theoretical analysis perspectives. Experimental results revealed that DILs exhibited superior extraction ability compared to MILs, with extraction efficiencies of 93.7% and 97.4% using [BMIM][NTf2] and [C6(MIM)2][NTf2]2 as extractants, respectively. The microscopic examination through theoretical calculations elucidated the higher hydrophobicity and extraction efficiency of DILs over MILs. The results indicated that the DIL showed stronger hydrophobicity than the MIL because the hydrogen bond strength between the DIL and water was lower than that of the MIL. Although the hydrogen bond strength between the DIL and phenol was lower than that of the MIL, the stronger van der Waals forces existed between DIL and phenol, so DIL was more efficient in extracting phenol. In addition, the experimental parameters were optimized to provide basic data for application, such as mass ratio of ILs to water, extraction time and temperature, pH, and initial phenol content. Finally, the DILs were recovered using rotary evaporation apparatus, and the results demonstrated that DILs had good recovery and reuse performance. In brief, this work could provide an effective method for the treatment of phenol-containing wastewater. And the revelation of molecular mechanism is expected to positively impact the design of high-performance task-specific ILs.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Fenol , Águas Residuárias , Fenóis , Água/química , Interações Hidrofóbicas e Hidrofílicas
14.
Chem Commun (Camb) ; 60(29): 3891-3909, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420843

RESUMO

Ionic liquids (ILs) have emerged as a new class of materials, displaying a unique capability to self-assemble into micelles, liposomes, liquid crystals, and microemulsions. Despite evident interest, advancements in the controlled formation of amphiphilic ILs remain in the early stages. Taking inspiration from nature, we introduced the concept of lipid-like (or lipid-inspired) ILs more than a decade ago, aiming to create very low-melting, highly lipophilic ILs that are potentially bio-innocuous - a combination of attributes that is frequently antithetical but highly desirable from several application-specific standpoints. Lipid-like ILs are a subclass of functional organic liquid salts that include a range of lipidic side chains such as saturated, unsaturated, linear, branched, and thioether while retaining melting points below room temperature. It was observed in several homologous series of [Cnmim] ILs that elongation of N-appended alkyl chains to greater than seven carbons leads to a substantial increase in melting point (Tm) - which is the most characteristic feature of ILs. Accordingly, it is challenging to develop ILs with low Tm values while preserving their hydrophobicity and self-organizing properties. We found that two alternative Tm depressive approaches are useful. One of these is the replacement of the double bonds with thioether moieties in the alkyl chains, as detailed in several published papers detailing the chemistry of these ILs. Employing thiol-ene and thiol-yne click reactions is a facile, robust, and orthogonal method to overcome the challenges associated with the synthesis of alkyl thioether-functionalized ILs. The second approach involves replacing the double bonds with the cisoid cyclopropyl motif, mimicking the strategy used by certain organisms to modulate cell membrane fluidity. This discovery has the potential to greatly impact the utilization of lipid-like ILs in various applications, including gene delivery, lubricants, heat transfer fluids, and haloalkane separations, among others. This feature article presents a concise, historical overview, highlighting key findings from our work while offering speculation about the future trajectory of this de novo class of soft organic-ion materials.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lipossomos , Lipídeos , Compostos de Sulfidrila , Sulfetos
15.
Food Chem ; 445: 138694, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364492

RESUMO

In this study, a novel ionic liquid (3-(3-chloro-2-hydroxypropyl)-1-butyl-1H-imidazol-3-ium hexafluorophosphate, (IL-2) was synthesized and characterized by FT-IR, NMR (1H,13C,31P) spectroscopy, and TGA. Two microextraction methods, ultrasonic assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) and ultrasonic assisted-temperature controlled ionic liquid DLLME, have been developed for preconcentration of Brilliant Blue FCF (E133) from some food products by the sythesized IL-2. For optimization of the both methods, several parameters such as volume of IL-2, pH, temperature, ultrasonication time, extraction time, centrifugation time, and salt effect were investigated. The obtained results for both methods under optimum conditions were compared. According to these results, the best limit of detection (4.55 µg L -1), enrichment factor (58), preconcentration factor (50), linear range (15-80 µg L -1), relative standard deviation % (1.15 %) were obtained by use of USA-TC-IL-DLLME method. Furthermore, the developed USA-TC-IL-DLLME method was succesfully applied to real samples for the preconcentration of Brilliant Blue FCF.


Assuntos
Benzenossulfonatos , Líquidos Iônicos , Microextração em Fase Líquida , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Temperatura , Interleucina-2 , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401717

RESUMO

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Assuntos
Chlorella vulgaris , Herbicidas , Líquidos Iônicos , Pseudomonas putida , Herbicidas/toxicidade , Herbicidas/química , Dicamba/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Cátions/química
17.
ACS Appl Bio Mater ; 7(3): 1558-1568, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373341

RESUMO

Ionic liquid (IL) cationic species have recently captivated the attention of pharmacists, biochemists, and biomedical scientists as promising antibacterial agents to deal with the multidrug resistance bacteria crisis. The structure and functional groups of ILs influence their physiochemical properties and biological activities. However, a comprehensive study is required to fully understand the details of the antibacterial activity of ILs carrying various functional groups. Herein, dicationic ILs (DCILs) are reported based on imidazolium rings as efficient antibacterial agents. The DCILs carried various functionalities such as 2-hydroxybutyl (DCIL-1), 2-hydroxy-3-isopropoxypropyl (DCIL-2), 2-hydroxy-3-(methacryloyloxy)propyl (DCIL-3), 2-hydroxy-2-phenylethyl (DCIL-4), and 2-hydroxy-3-phenoxypropyl (DCIL-5). The structure-antibacterial activity relationships of the DCILs against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were comprehensively studied through antibacterial tests, morphology analysis, and adhesion tests. The experimental assays revealed an antibacterial efficacy order of DCIL-5 > DCIL-1 > DCIL-4 > DCIL-2 > DCIL-3. The all-atom molecular dynamics (MD) simulation showed a deep permeation of the hydrophobic -OPh functional group of DCIL-5 through the E. coli membrane model in agreement with the experimental observations. Current findings assist scientists in designing new task-specific DCILs for effective interactions with biological membranes for different applications.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Cátions/química
18.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338998

RESUMO

Measures to endorse the adoption of eco-friendly biodegradable plastics as a response to the scale of plastic pollution has created a demand for innovative products from materials from Nature. Ionic liquids (ILs) have the ability to disrupt the hydrogen bonding network of biopolymers, increase the mobility of biopolymer chains, reduce friction, and produce materials with various morphologies and mechanical properties. Due to these qualities, ILs are considered ideal for plasticizing biopolymers, enabling them to meet a wide range of specifications for biopolymeric materials. This mini-review discusses the effect of different IL-plasticizers on the processing, tensile strength, and elasticity of materials made from various biopolymers (e.g., starch, chitosan, alginate, cellulose), and specifically covers IL-plasticized packaging materials and materials for biomedical and electrochemical applications. Furthermore, challenges (cost, scale, and eco-friendliness) and future research directions in IL-based plasticizers for biopolymers are discussed.


Assuntos
Quitosana , Líquidos Iônicos , Líquidos Iônicos/química , Plastificantes/química , Celulose/química , Biopolímeros , Quitosana/química
19.
J Chromatogr A ; 1717: 464686, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310697

RESUMO

For the first time, benzophenone and related compounds were investigated in açaí-based food products. An extraction method based on the dilute-and-shoot approach, combined with the use of in-situ formed metal-containing ionic liquids (MCILs) followed by high-performance liquid chromatography, was developed and validated. A nickel and cobalt-based MCIL, in addition to the ratio of MCIL to lithium bis[(trifluoromethyl)sulfonyl]imide salt ([Li+][NTf2-]) for the ensuing metathesis reaction, were optimized. Parameters of the in-situ formed MCIL step, namely, the amount of MCIL, centrifugation time, and dilution step, were analyzed using a multivariate optimization approach, including central composite rotatable design and Derringer and Suich's tool. Optimum extraction performance was achieved using 50.98 mg of nickel-based MCIL and a MCIL to ([Li+][NTf2-]) ratio of 1:3 (m/m), a centrifuge time of 22 min, and 10.53 mL of water for the dilution step. This condition was used to perform analytical validation, which yielded satisfactory results with R2 ≥ 0.995, limits of detection (LOD) ranging from 0.0025 to 0.5 mg kg-1, and limits of quantification (LOQ) between 0.008 and 1.5 mg kg-1. The recovery rate ranged from 87 % to 107 % and precision values (as percent relative standard deviation) were equal or lower than 13 %. The validated method was applied to 25 samples of açaí-based food products purchased from Brazil and the United States. None of the samples showed analyte concentration levels above the LOD. The method's suitability was demonstrated for future monitoring of complex samples, such as foodstuffs.


Assuntos
Líquidos Iônicos , Microextração em Fase Líquida , Líquidos Iônicos/química , Níquel , Água/química , Metais , Cromatografia Líquida de Alta Pressão , Lítio , Íons , Benzofenonas , Microextração em Fase Líquida/métodos
20.
Biophys Chem ; 307: 107192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335806

RESUMO

Tuning the self-assembly of collagen has broad applications in the biomedical field owing to their desired biological performance as collagenous materials with tunable functionalities can further determine cellular responses. In this work, an attempt has been made to tune the self-assembly of collagen using ionic liquids, viz., imidazolium chloride (IC) and choline dihydrogen phosphate (CDHP) at its physiological pH, followed by probing assembled systems using various characterization methods. Turbidity measurements of fibrillar networks were performed to ascertain the rate of fibril formation in addition of imidazolium chloride and choline dihydrogen phosphate to collagen at physiological pH. Morphological changes were examined using Scanning Electron Microscope (SEM), binding affinities were measured by Microscale Thermophoresis (MST), in addition to, changes in the shear viscosity, mechanical strength of collagen fibrils when interacted with imidazolium and choline based ILs were carried out using rotational rheometer and Quartz Crystal Microbalance (QCM) measurements. Experimental result depicts that CDHP imparts better crosslinking as well as mechanical strength compare to IC, which is already known for destabilizing the triple helix structure is inhibiting the fibril formation. This self-assembled, ionic-liquid treated collagen-fibrillar system would accelerate various force modulated fibrillar network study, for mimicking the ECM and tissue engineering application.


Assuntos
Colágeno Tipo I , Líquidos Iônicos , Colágeno Tipo I/química , Líquidos Iônicos/química , Eletricidade Estática , Colágeno/química , Colina , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...